JAM: Joint Action Matrix Factorization for Summarizing a Temporal Heterogeneous Social Network
نویسندگان
چکیده
This paper presents JAM (Joint Action Matrix Factorization), a novel framework to summarize social activity from rich media social networks. Summarizing social network activities requires an understanding of the relationships among concepts, users, and the context in which the concepts are used. Our work has three contributions: First, we propose a novel summarization method which extracts the co-evolution on multiple facets of social activity – who (users), what (concepts), how (actions) and when (time), and constructs a context rich summary called "activity theme". Second, we provide an efficient algorithm for mining activity themes over time. The algorithm extracts representative elements in each facet based on their co-occurrences with other facets through specific actions. Third, we propose new metrics for evaluating the summarization results based on the temporal and topological relationship among activity themes. Extensive experiments on real-world Flickr datasets demonstrate that our technique significantly outperforms several baseline algorithms. The results explore nontrivial evolution in Flickr photo-sharing communities.
منابع مشابه
A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملDeveloping a 3D stochastic discrete fracture network model for hydraulic analyses
Fluid flow in jointed rock mass with impermeable matrix is often controlled by joint properties, including aperture, orientation, spacing, persistence and etc. On the other hand, since the rock mass is made of heterogeneous and anisotropic natural materials, geometric properties of joints may have dispersed values. One of the most powerful methods for simulation of stochastic nature of geometri...
متن کاملcluTM: Content and Link Integrated Topic Model on Heterogeneous Information Networks
Topic model is extensively studied to automatically discover the main themes that pervade a large and unstructured collection of documents. Traditional topic models assume the documents are independent and there are no correlations among them. However, in many real scenarios, a document may be interconnected with other documents and objects, and thus form a text related heterogeneous network, s...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملInferring Sentiment from Web Images with Joint Inference on Visual and Social Cues: A Regulated Matrix Factorization Approach
In this paper, we study the problem of understanding human sentiments from large scale collection of Internet images based on both image features and contextual social network information (such as friend comments and user description). Despite the great strides in analyzing user sentiment based on text information, the analysis of sentiment behind the image content has largely been ignored. Thu...
متن کامل